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COMMENT -- Durra, also called "Indian millet" and "Guinea com,'' is a type of gram sorghum 
wtth slender stalks, widely grown in warm dry regions. Durra sounds like "durable" which 
isn't a bad connotation. Carnegie Institute personnel indicated that com is by far the 
largest in size of all grains. We respectfully declined their suggestion for a name denoting 
"largest grain." 

1. Introduction 
Many computation-intensive, real-time applications require efficient concurrent execution of multiple tasks 
devoted to specific pieces of the application. Typical tasks include sensor data collection, obstacle 
recognition, and global path planning in robotics and vehicular control applications. Since the speed and 
throughput required of each task may vary, these applications can best exploit a computing environment 

consisting of multiple special and general purpose processors that are logically, though not necessarily 
physically, loosely connected. We call this environment a heterogeneous machine. 

During execution time, processes, which are instances of tasks, run on possib.j separate processors, and 

communicate with each other by sending messages of different types. Since the patterns of 
communication can vary over time, and the speed of the individual processors can vary over a wide 

range, additional hardware resources, in the form of switching networks and data buffers are required in 
the heterogeneous machine. 

The application developer is responsible for prescribing a way to manage all of these resources We call 
this prescription a task-level application description. It describes the tasks to be executed, the possible 

assignments of processes to processors, the data paths between the processors, and the intermediate 
queues required to store the data as they move from source to destination processes. A task-level 
description language is a notation in which to write these application descriptions. The problem we are 
addressing is the design of a task-level description language. 

We are using the term description language rather than programming language to emphasize that a 
task-level application description is not translated into object code of some kind of executable "machine 

language." Rather, it is to be understood as a description of the structure and behavior of a logical 
machine, that will be synthesized into resource allocation and scheduling directives. These directives are 
to be interpreted by a combination of software, firmware, and hardware in a heterogeneous machine. 

Although our ultimate goal is to design and implement a task-level description language that can be used 
for different machines and for varying applications, our first pass is influenced by both a specific 
architecture, HETO [4], and by a specific application, the Autonomous Land Vehicle (ALV), and more 

specifically, the perception components of the ALV^fSJ* We assume there is a cross-bar switch, intelligent 
buffers on the switch sockets, and a scheduler that can communicate with all processors, buffers, and I/O 
devices. 

1.1. Scenario 
Here is a scenario from the user's viewpoint of how the task-level language is used to help develop an 
application to run on some target, heterogeneous machine. We see three distinct phases in the process; 

1. the creation of a library of tasks, 

2. the creation of an application description, and 

3. the execution of the application. 



Library creation activities 
These happen early in the life of an application, when the primitive tasks are defined. 

1. The developer breaks the application into specific tasks. Typical tasks are sensor 
processing, feature recognition, map database management, and route planning. Other 
tasks might be of a more general nature, such as sorting, array operations, etc. 

2. The developer writes code implementing the tasks. For a given task, there may be possibly 
many implementations, differing in programming language (e.g., one written in C or one 
written in W2), processor type (e.g., Motorola 68020 or IBM 1401), performance 
characteristics, or other attributes. The writing of a task implementation is more or less 
independent of Durra and involves the coding, debugging, and testing of programs in 
various languages executing on various machines. 

3. The developer writes task descriptions and enters them into the library. This is where Durra 
first enters the picture. Durra is used to write specifications of eacn task's performance and 
functionality, the types of data it produces or consumes, and the ports It uses to 
communicate with other tasks. 

Description creation activities 
These happen when the user decides to put together an application (say, autonomous land vehicle) using 
as building blocks tasks in the library. 

1. The user writes a task-level application description. Syntactically, a task-level application 
description is a single task description and could be stored in the library as a new task. This 
allows writing hierarchical task-level application descriptions. 

2. The user compiles the description. During compilation, the compiler retrieves task 
descriptions matching the task selections specified by the user from the library and 
generates a set of resource allocation and scheduling commands to be interpreted by the 
scheduler. 

3. The user links the output of the compiler with run-time support facilities, obtaining a 
scheduler program. 

Application execution activities 
I.The scheduler downloads the task implementations, i.e., code, to the processors and 

interprets the scheduling commands and initialization code for the machine. 

2. The heterogeneous machine runs the processes on processors as dictated by the 
scheduler program. 

1.2. Terminology 
Durra is used for describing process interaction at a logical, not physical, level, and thus it can be used 
independently of any physical configuration of an actual heterogeneous machine. We will use different 

terms to distinguish between the physical network (P) of processors, memories, and switches 
implementing the heterogeneous machine, and the logical network (L) of processes and data queues 
implementing the application (A). Figures 1 and 2, respectively, illustrate the physical and logical 
components of the system. 

buffers (P) computers acting as input or output devices, interfacing processors with the switch. 
As an optimization, buffers execute predefined tasks such as merge, deal, broadcast, 
and data transformations. 

implementation (A) code written in some programming language for a specific processor, and satisfying 
the performance, functional, and other requirements specified in a task description. 

ports (L) processes' logical input or output devices.   Input ports remove data from queues; 
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output ports deposit data in queues. 

process (L) a uniquely identifiable instance of a task, running on a processo of the heterogeneous 
system. The same task may be instantiated any number of times to obtain multiple 
processes executing the same code. 

processor (P) a computer in the heterogeneous system, not to be confused with the scheduler 
processor or the buffers. Each processor in the heterogeneous system has one or 
two buffers that act as interfaces between the processor and the switch. Processors 
send data to and receive data from buffers as their means of communication with 
other processors. 

queue (L) a uniquely identifiable logical link between two processes, following a FIFO discipline. 
Queues serve as intermediaries between input and output ports. 

scheduler (P, L)      a computer serving as resource allocator and dispatcher in the heterogeneous 
system. It controls the switch, all processors, and all buffers. 

switch (P) an interconnection network used to tie together all processors in the heterogeneous 
system. The switch routes data between the buffers attached to the processors. 

task (L, A) an abstraction of a set of implementations, each written for a class of processors, 
implementing part of an application. Tasks are stored in libraries. 

The processes of tli3 system are impiementPd by downloading and executing task implementations, i.e., 
programs, onto processors   f the right kind.   The queues of the system are implemented by allocating 
space in the corresponding  'uffers' memories. This is illustrated in Figure 3. 

1.3. Notes on Syntax 
To describe the syntax of the iV^.k-;.evel Description Language, we use the standard Backus-Naur-Form 
(BNF), with the following convention:;. 

1. Commas separate alternatives, Brpses ("{" and "}") indicate optionality. 

2. Terminal symbols are enclosed in quotes (" and "), but the quotes do not belong to the 
terminal. 

3. No distinction is made between upper and lo.ver case letters in terminals and non-terminals. 

4. A non-terminal of the form xyz_Listcomma stands for a list of one or more xyz's separated by 
commas, i.e., the character",", not the string "comma." 

5. Comments start with the characters ' -".   Any characters between "-" and the end of the 
line are ignored. 

6. Identifiers are, in the usual fashion, sequences of letters, digits, and "__" (underscore), 
beginning with a letter. 

7. Strings are arbitrary sequences of Ascii printable characters, enclosed in double quotes ("). 
A double quote inside a string must be written as two consecutive double quotes: 

"A string with a double quote,"", Inside" 

8. Integer and real numbers are always decimal, i.e., base 10. A real number can terminate 
with a period "." without a fractional part. 

1.4. Keywords and Predefined Identifiers 
Keywords and predefined identifiers are highlighted in normal text by writing them in \>old face, or in 
"quotes'. respectively. The following words are keywords In the language: after, and, array, ast, 
attributes, before, behavior, bind, cst, date, days, during, end, ensures, est, gmt, hours, identity, If, 
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index, in, is, local, loop, minutes, months, mst, not, of, or, out, ports, process, pst, queue, 
reconfiguration, remove, repeat, requires, reshape, reverse, rotate, seconds, select, signals, size, 

structure, task, then, timing, to, transpose, type, union, when, years 

Ttv following words are predefined identifiers in the language: "broadcast", "current_size", 

"currentjime", "deal", "delay", "get", "implementation", "merge", "minusjime", "mode", "plusjime". 

"processor", "put", 

1.5. Literal Values 
Each of the non-terminals Integerv'alue. RealValue, StringValue, and TimeValue stands for (a) literals 
(constants) of the appropriate kind, or (b) names of attributes (Section 8) whose values are literals of the 

appropriate kind, or (c) calls to one of the predefined functions in the language (Section 10.1) returning 

values of the appropriate kind; 

IntegerValue        ::=  IntegerLiteral , 
GlobalAttrName , 
FunctionCall 

RealValue ::=  RealLiteral , 
GlobalAttrName , 
FunctionCall 

StringValue ::=  StringLiteral , 
GlobalAttrName , 
FunctionCall 

TimeValue ::=  TimeLiteral , 
GlobalAttrName , 
FunctionCall 

1.6. How To Read This Manual 
This manual is written top-down, so the reader should be aware that there are many forward references. 
One can read this manual from beginning to end to get an overview of the language, and then read 

individual sections to understand the details of each language feature. 



2. Compilation Units 
Syntax: 
Compilation 
CompilationUnit 

: :=     CompilationUnit^ist,,^^,,^^ 
::=     TypeDeclaration   , 

TaslcDescription 

Meaning: 
There are two kinds of compilation units (i.e., separately compilable structures): type declarations and 

task descriptions. 

Any number of compilation units can be submitted to the compiler as a group, in a single text file. Each 
unit is compiled in order, and i( no errors are detected, the unit is entered into the library. It can then be 

used by units compiled later, including units submitted later in the same compilation. 



3. Type Declarations 
Syntax: 
TypeDe'-larat ion     :: = ,^TYPE'' TypeName V,IS'' TypeStructure , 

''TYPE'' TypeName ''IS'' UnionStructure 

:=  Identifier 

:=  ''SIZE'' ElementSize , 
■ 'AKRAY'' ArrayDimension ''OF' ' TypeName 

M'    IntegerValue_Listflpaca   ')' -•-  Positive   integer 

IntegerValue , -- Positive number of bits 
IntegerValue ''TO'' IntegerValue 

-- Non-negative size range 

:=  ''UNION'' '(' TypeName_Listc ')' 

TypeName 

TypeStructure 

ArrayDimension 

ElementSize 

UnionStructure 

Examples: 
•ype  packet   IS   size  12B   to   1024; 
type tails  's array   (5  10)   of packet; 
type  mix  is   union   (heads,    tails) ; 

Meaning: 
Type declarations are compilation units that define the structure of the data produced or consumed by the 

tasks. A type declaration introduces a global name for a data type, or a set of previously declared types, 
which caii then be used in port declarations. 

There are two kinds of type declara^ons. First, a type declaration can specify the structure of the data 

moving through a process port. The basic data type is a sequence of bits of fixed or variable (but bound) 
i ncjih. Mere complex types are declared as multi-dimensional arrays of simpler types. Second, a type 

can specify the union of a number of previously declared, i.e., named, types where data items moving 
through a piocess port could be one of any of the member types. 

-- Packets are of variable length 
— Tails are 5 by 10 arrays of packets 

-- Mix data could be heads or tails 
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4. Task Descriptions 
Syntax: 
TaskDescription     ::= ::=  ''TASK'' TaskName 

InterfacePart 
{ BehaviorPart } 

{ AttrDescriptionPart } 
{ StructurePart } 

' 'END''   TaskName 

Meaning: 
Task descriptions are compilation units used as building blocks for task-level application descriptions. 

A task description is divided into four components: (1) interface information, (2) behavioral information, (3) 
attributes, and (4) structural information. All these components will be described in later sections. Figure 
4 shows a template for a task description, where the ports and signals clauses constitute the interface 
information. 

task  task-name 
ports 

port-declarations 
-- Uaad for conmunication batwean a procaus and a quaua 

signals 
signal- declarations 
-- üaad for communication batwean a procaaa and tha achadular 

behsvior 
function-predicates 
timing-expressions 
--   A  daacription   of   th«  bahavior  of   tha   taak 

a'itributes 
attnbute-value-pairs 
--  Additional  propartxaa   of   tha   taak 

structure 
process-declarations 
queue-declarations 
binding-declarations 
reconfiguration-statements 
-~  A procaaa-quaua  graph   daacribmg  tha   mtarnal   atructura  of   a  taak 

end  task-name; 

-- REQUIRED 

-- OPTIONAL 

-- OPTIONAL 

— OPTIONAL 

-- OPTIONAL 

Figure 4:   A Template for Task Descriptions 
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5. Task Selections 
Syntax: 
TaskSelection       : :=  ' 'TASK' ' TaskName 

{ PortDeclarationPart } 
{ SignalDeclarationPart ) 

{ BehaviorPart } 
{ AttrSelectionPart } 

{ ' 'END' ' TasJcName ) 

Meaning: 
Task selections are templates used to identify and retrieve task descriptions from the library. 

A given task, e.g., convolution, might have a number of different implementations that differ along 
dimensions such as algurithm used, code version, performance, or processor type. In order to select 
among a number of alternative implementations, the user provides a task selection as part of a process 
declaration, as described in Section 9.1. This task selection lists the desirable features of a suitable 
implementation. 

Syntactically, a task selection looks somewhat like a task description without the structure part, and all 

other components except for the task name are optional. For example, notice that in the syntax of a task 
declaration, the interface part (Section 6) requires the declarations of the ports, whereas in a task 
selection, the declaration of the ports is optional. Figure 5 shows a template for a task selection. For 

brevity, if only the task name is given, the terminating "end task-name" is optional. 

task fasA-name -- REQUIRED 
ports --  OPTIONAL 

port-declarations 
--  A  Signatur«  that   must  match  port   diractions   and  typas   of 
--   that   of  a  task  dascription   in  th«   library. 

signals -- OPTIONAL 
signal-declarations 
~-  A  Signatur»   that   must  match   signal   dir«ctions   and  nam««   of 
--  that   of  a  task,  dascription   in  th«   library. 

beha ior -- OPTIONAL 

fun-.iion-predicates 
timing-expressions 
--  A  specification   of   th«  dasirad  functionality  and  timing bahavior  of 
--   that   of  a  task  description   in  tha   library. 

attributes -- OPTIONAL 

a ttnbute- value-pairs 
- ■  Namad (actual) attributas usad to match (formal) attributes of 
-- thosa of a taak dascription in tha library. 

end task-name -~ optional if only tha task nama is «pacifiad 

Figure 5:   A Template for Task Selections 

^^ 
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6. Interface Information 
Syntax: 
InterfacePart       ;:=  PortDeclarationPart { SignalDeclarationPart } 

Meaning: 
The interface portion of a task description or a task selection provides information about the ports of the 
processes instantiated from the task and the signals used by the processes instantiated from the task to 

communicate with the scheduler. 

6.1. Port Declarations 

:=      -PORTS"   PortDeclaration_Listoömicolon   ^ 

:=     PortNaine_Listc 

PortName_Listc 

:=  Identifier 

:=  { ProcessName 

1 'IN' '  TypaName 
> ^UT' ' TypeName 

} PortName 

Syntax: 
PortDeclarationPart 

PortDeclaration 

PortName 

GlobalPortName 

Examples: 
ports 

inl:   in   haada; 
outl,   out2 :   out   tails; 

Meaning: 
A port declaration specifies the direction of the data movement and the type of data moving through the 
port. 

Port names must be unique within a task.   Outside the task, ports are identified by their global name, 
obtained by prefixing the name of a process (instance of a task) to the name of the port, e.g., pi .out2. 

6.2. Signal Declarations 

Syntax: 
SignalDeclarationPart 

SignalDeclaration   ::= 

; :=  ' 'SIGNALS' ' 
SignalDeclaration_List 

SignalName List „T^,.1 ' — comma 
SignalName_ListCORBaa   ' 
SignalName  List „„„.   ' " — comma 

aamlcolon 

^IN"    , 
''OUT''    , 
^IN''    ' ^OUT' 

SignalName 

GlobalSignalName : 

Examples: 
signals 

Stop, Start, RÄSum«: in; 
RangaError, FormatError: out; 
Raad: in out; 

Identifier 

{ ProcessName } SignalName 
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Meaning: 
Signals are special messages exchanged between a process and the scheduler. A signal declaration 
specifies the direction of the signal. An in signal is a message that a process can receive from the 
scheduler; an out signal is a message that a process can send to the scheduler; an in out signal is used 

for both directions of communication. 

All signal names must be unique within a task. Outside the task, a signal is identified by compounding the 

name of a process (instance of a task) with the name of the signal, e.g., pi.Restart. 

6.3. Rules for Matching Selections with Descriptions 
If a task selection provides a port declaration clause, the port names provided in the task selection 

override the port names provided in the task declaration. The port declaration lists must otherwise be 

identical, i.e., the number, the order, the directions, and the types must be identical. 

If a task selection provides a signal declaration clause, the clause must be identical to that provided in the 

task description, i.e., the names, number, and directions must be identical. 

3rr= 
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7. Behavioral Information 
Syntax: 
BehaviorPart        :;=  x'BEHAVIOR'' FunctionPart TimingPart 

FunctionPart        ::=  { V,REQUIKES'' '"' predicate '"' ^ \-' ' } 
{ ''ENSURES'' ,"' predicate x"' ,^•'' } 

TimingPart ::=      {    ''TIMING''   TimingExpression   » \«' '    } 

predicate Larch Predicate1 

Meaning: 
The behavioral information part specifies functional and timing information about the task. 

The functional information part of a task description consists of a pre-condition (requires) on what is 
required to be true of the data coming through the input ports, and a post-condition (ensures) on what is 

guaranteed to be true of the data going out on the output ports. 

The timing information part of a task description consists of a timing expression following the keyword 
timing. The timing expression describes the behavior of the task in terms of the operations it performs on 

its input and output ports. 

The formal meaning of the behavioral information is essentially based on first-order logic. In what follows, 

we give only an informal meaning of the individual parts and their combination. See[1] for the formal 

meaning. 

7.1. Function Part 
The functional information of a task description describes the behavior of the task in terms of predicates 
about the data in the queues, before and after each execution cycle of the task. The Larch Shared 

Language is used as the assertion language in the predicates of these clauses. We restrict this section to 
a very brief outline of Larch's approach. 

Larch [2, 3] uses a two-tiered approach to specifying program modules: a trait defines state-independent 

properties, and an interface specification defines state-dependent properties of a program. A trait is 
written in the Larch Shared Language (LSL), and it provides the assertion language used to express and 
define the meaning of the predicates of an interface specification. 

For a program module such as a procedure, a Larch interface specification is written in a Larch Interface 

Language and contains predicates about the states before and after the execution of the procedure. The 
Larch Interface Language (LIL) to be used is specific to the programming language in which the 

procedure is written (e.g., C, CommonLisp, or Ada.) 

Essentially, a first-ordör assertion, [2J 
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7.1.1. Larch Traits and Specifications 
Figure 6 depicts a Larch (two-tiered) specification of queues with "out" and "get" operaticns. The top part 
of the specification (Figure 6.a) is a trait written in LSL used to describe values of queues. A set of 

operators and their signatures following introduces defines a vocabulary of terms to denote values of a 
type. For example. Empty and lnsert(Empty, 5) denote two different queue values. The set of equations 

following the constrains clause defines a meaning for the terms; more precisely, an equivalence relation 
on the terms, and hence on the values they denote. For example, from the above trait, one could prove 

that First(Rest(lnsert(lnsert(Empty, 5), 6))) = 6. 

The bottom part of the specification (Figure 6.b) contains two interfaces written in a "generic" Larch 

interface language. They describe the functional behavior of two queue operations, "put" and "get" 
(queue operation names are used to write timing expressions, which are described in Secticri 7.2.3.) A 

requires is a pre-condition on the state of an operation's input data that must be true upon operation 
invocation; an ensures is a post-condition on the state of an operation's input and output data that is 
guaranteed to be true upon operation termination. An omitted predicate is taken to be true. The 

specification for "get'' states that "get" must be called with a non-empty queue and that it modifies the 
original queue by removing its first element and returning ;t. 

QVals:   trait 
introduces 

Eiapty.    —»  Q 
Inaart :   Q,    E   —»   Q 
First:   Q  -»   E 
R«st:   Q   -♦   Q 
iaEmpty:   Q    ->   Bool 
lain:   Q,    E   —>   Bool 

constrains Q so that 
Q generated by   [  Empty,   lna«rt  ] 
for all   q:   Q,    a,    «1:   E 

First(Insert(Empty),    «))   =   « 
First (Ins«rt (q,    «) )   =   if   i8Empty(q)    then   a   else  First (q) 
R«st (Insart (q,   a))   =   if   i8Einpty(q)   then   Empty  else   Insart (Rast (q) ,    a) 
xsEmpty(Empty)   =   trua 
isEmpty(Insart(q,    a))   •   falsa 
isln(Empty,    a)   =   falsa 
isln(Insart(q,    a),   al)   =   (a   =  al)    j    isln{q,    al) 

a. A Trait for Queue Values 

Put - oparation (q: quaua, a: alamant) 
ensures a >t, = insart (q, a) 

Gat ~  oparation (q: quaua) raturns (a: alamant) 
requires -isEmpty (q) 
ensures a -t = Rast(q) & a = First (q) 

b. Interfaces for Queue Operations 

Figure 6:   A Larch Two-Tiered Specification for Queues 

: ..J
1
.: -—T-^-" 
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7.1.2. Functional Specification of a Task 
We use a similar approach as Larch's for the specification of the functional behavior of a task. That is, we 
view the task as a procedure whose input and output "parameters" are defined by the ports of the task. 
A requires clause states what is required to be true of the data coming through the input ports; an 
ensures clause states what is guaranteed to be true of the data going out through the output ports. 

If one were to view each cycle of a task as one execution of a procedure, the requires and ensures are 
exactly the pre- and post-conditions on the functionality of that cycle. An omitted predicate is taken to be 
true. 

These are not assertions about the queues connected to the ports. For instance, an assertion could be 
made that a datum of some type was sent to an output port. It cannot be asserted that the datum is in the 
associated output queue, at the end ot the task execution, because it could have been removed by then. 

It is up to the impiementor ot a task to verify that the functionality of the task satisfies the requires and 
ensures predicates. A task description writer and user may assume that the task impiementor performed 
such verification either formally or informally. 

For example, consider the matrix multiplication task in Figure 7. The task takes input matrices from two 

queues and outputs the result matrix on an output queue. The. requires clause states that the task 
impiementor may assume that the number of rows of the matrix entering through the port in1 equals the 

number of columns of the matrix entering through in2. The ensures clause states that the result of 
multiplying the two input matrices is output through the output port. 

task multiply 
ports 

inl, in2 : in matrix; 
outl: nut matrix; 

behavior 
requires "rows (Firat (inl) ) = cols (First (in2) )" ; 
ensures  "Insert(outl, First(inl) * First(in2))' 

end multiply; 

Figure 7:   A Matrix Multiplication Task 

7.2. Timing Part 
Processes remove data from their input queues and store data into their output queues following a task- 
specific pattern provided by a timing expression. A timing expression describes the behavior of the task 

in terms ot the operations it performs on its input and output ports; this is the behavior of the task seen 
from the outside. 

7.2.1. Time Literals 
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Syntax: 
TimeLiteral 

Date 

years 

months 

days 

TimeOfDay 

hours 

minutes 

seconds 

TimeUnit 

TimeZone 

IndeterminateTime 

Examples: 
5:15:00   es! 

15.5 hours  ast 

{ Date ' ,@' ' } TiroeOfDay 
IndeterminateTime 

years ,V' months ''/'' 

IntegerValue 

IntegerValue 

IntegerValue 

{ { hours '':'' ) minutes 
RealValue TimeUnit , 
IntegerValue TimeUnit , 

IntegerValue 

IntegerValue 

IntegerValue , 
RealValue 

1 ' YEARS' ' , 
1 MONTHS' ' , 
''DAYS'' f 

''HOURS'' , 
''MINUTES'' , 
' 'SECONDS' ' 

''EST'' 
''CST'' 
' 'MST' ' 
''PST'' 
''GMT'' 
''LOCAL' 

{ TimeZone ) 

deys 

-- range is 1..12 

-- range is 1..31 

' ' : ' ' } seconds , 

-- range is 0..23 

-- range is 0..59 

-- Eastern Standard Time 
-- Central Standard Time 

-- Mountain Standard Time 
-- Pacific Standard Time 

-- Greenwich Meridian Time 
-- Local Time 

-- Application Start Time 

2:10 

2.1667 minutes 

-- An absolut« tim«: 5 hours 15 minutas Eastam Standard Tim«. 

-- An application relativ« tim«: 15 hours and 30 minutas 

-- aftar th« start of th« application. 

-- An «v«nt ralativ« tim«: 2 ininut«8 10 saconds 

-- aft«r som« basa «vant. 

-- Approximataly tha saxna avant ralativa tima as abova 

-- 10 saconds is l/6th of a minuta. 

* -- An indatarminata point in tima. 

Meaning: 

Time values are used to specify points in time. These can be either (1) absolute, i.e., independent of the 
application, in which case they must be followed by the name of a time zone; (2) relative to the application 
start time, in which case they must be followed by the fictitious time zone "ast"; or (3) relative to some 
prior event in the application, in which case neither a date nor a time zone is allowed. 

The notation allows for alternative ways of denoting time of day or time elapsed between events. Time 

can be expressed in the familiar formats "HH:MM;SS", "MM.SS", or just "SS". Thus, a plain number 

represents a number of seconds. Time can also be expressed as a multiple of other time units by writing 
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a number followed by a unit name such as seconds, minutes, hours, days, months, or years. The use 

of seconds as a time unit is redundant, but allowed for completeness' sake. The format adopted by a 
user might depend on the nature of the application, on any standard conventions in the application 

domain, on the magnitude of the time scale, on the precision required, or simply on aesthetic, personal 

preferences. 

7.2.2. Event Expressions and Time Windows 

Syntax: 
EventExpression     ::=  GlobalPortName 

{ y ' . ' '   QueueOperation } 
{ TimeWindow } 

' 'DELAY' ' TimeWindow 

TimeWindow : :=  *'[' ' TimeValue ' \ '' TimeValue y y]' ' 

QueueOperation      ::=  Identifier -- Configuration dependent 

Examples: 
inl -- An op«ration (g«t, by d«fault) on th« qnau« faading port inl 

inl.gat -- Ax» opÄration taking a «yst«™ default tim« to compiat« 

inl.g«t[5, 15] -- An Operation taking b«twaan 5 and 15 »«cond« to coraplet« 

d«lay[10, 15] -- A delay interval lasting between 10 and 15 seconds 

delay[*, 10] -- A delay interval taking at most 10 seconds 

delay[10, *] -- A delay interval taking at least 10 seconds 

Meaning: 
Queue operations performed by the processes constitute the basic events of an application description. 

An event expression represents a queue operation on a queue attached to a specific port, taking a 
variable amount of time to complete. A pseudo-operation, "delay", is used to represent the time 

consumed by the process between (real) queue operations. 

The name of the queue operation is optional. If the name is not given, a default queue operation is 

assumed: "get" for input ports, "put" for output ports. The complete list of queue operations is 
configuration dependent, as described in Section 10.4. 

Time windows are used to describe the duration of a queue operation or the delay between two 

operations. Time windows are denoted by a pair of time values [Trn|n,Tmax] defining the boundaries of the 

interval. 

The time window associated with a queue operation describes the minimum and maximum time needed 
to perform the operation. This time window is optional, and if it is missing, a configuration dependent, 

default window is assumed, as described in Section 10.4. Intervals of time between queue operations are 
denoted by a "delay" operation whose time window describes the minimum and maximum time 

consumed by the process in between queue operations. 
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7.2.3. Timing Expressions 

Syntax: 
TimingExpression    : :=  { ' 'LOOP'' ) CyclicTimingExpression 

=     ParallelEventExpression_List#pacmB 

=     BasicEventExpressior^List^^, v#rt;Lcal bftr 

CyclicTimingExpression 

ParalleIEventExpression 

BasicEventExpression =  EventExpression , 
{ Guard ^=>'' } ' (' CyclicTimingExpression ')' 

Guard :;=  ''REPEAT'' IntegerValue , 
'BEFORE'' TimeValue , -- Absolute time 
'AFTER'' TimeValue , -- Absolute time 
'DURING' ' TimeWindow ,       -- Tniin is Absolute time 
'WHEN'' "" predicate "" 

predicate :   Larc^ Predicate2 

Examples: 
inl || in2[10/15] — Two parallal input op«rationa, starting simultanaously 

inl[0,5] dalay[10,15] outl -- Two naquantial inputr oparation» with an intarvaning dulay 

repeat 5 => (ml (0,5] dalay[10,15] outl)       -- Sama as abova but as a cycla rapaatad fiva timas 

before 18:00:00 local =>{...) -- A saquanca constrained to start bafora 6 pm 

after 18:00:00 local =>(...) -- A saquanca constrainad to start aftar 6 pm 

during [18:00:00 local, 12 hours] =>(...) -- A saquanca constrainad to start at night 

when ~«mpty(inl) and ~ampty(in2) => ({inl.gat || in2.gat) outl.put); 
-- A saquanca constrainad to start aftar both input quauas hava data. 

loop when ~«nipty(inl) and -ampty(in2) => ((inl.gat || in2.gat) outl.put) ; 
-- Tha sama saquanca as abova but rapaatad indafmataly. 

Meaning: 
A timing expression is a regular expression describing the patterns of execution of operations on the input 
and output ports of a task. The keyword loop can be used to indicate that the pattern of operations is 
repeated indefinitely. 

A timing expression is a sequence of parallel event expressions. Each parallel event expression consists 

of one or more event expressions separated by the symbol "||" to indicate that their executions overlap. 
Since the expressions might take different amounts of time to complete, nothing can be said about their 

completion, other than a parallel event expression terminates when the last event terminates. 

Parallel events start simultaneously but are not necessarily completed at the same time. In the 
expression "(inl || in2{10,15l)", the duration of the input operation on port inl defaults to some 
configuration-dependent value (See Section 10.4) and might be shorter or longer than the explicit 

duration of the input operation on port in2, i.e., between 10 and 15 seconds. 

A basic event expression is either a queue operation (including "delay") or a timing expression enclosed 
in parentheses. The latter form also allows for the specification of a guard, an expression specifying the 

conditions under which a sequence of operations is allowed lo start or repeat its execution. 

"-'Essentially, a first-order assertion, [2] 
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Guard 

repeal 

before 

alter 

during 

when 

Description 

This guard indicates repetitions ot a timing expression. The number of repetitions is 
a non-negative integer value. 

This guard is followed by an absolute time value representing the latest start time 
allowed. If the deadline does not include a date, i.e., it is just a time of day, and the 
deadline has passed, then the sequence Is blocked at most until midnight of the 
current date and will unblock at "00.00:00" of the following day. The task is 
terminated if a dated deadline has passed. 

This guard is followed by an absolute time value representing the earliest start time 
allowed If necessary, the sequence is blocked until the deadline. If the deadline 
does not include a date, i.e., it is just a time of day, then the sequence is blocked at 
most 24 hours. For example, if it is "00:00:00.000" and the deadline is 
"23.59.59.999" the sequence will unblock at the end of the day. 

This guard Is followed by a time window during which the sequence is allowed to 
start. The first value is the earliest start time allowed and must be an absolute time 
value; the second value is the latest start time allowed and can be an absolute time 
value or a time value relative to the former. 

This guard describes what is required to be true of the state of the system (i.e., time 
and queues, see Section 10.1) before the sequence is allowed to start. It is a pre- 
condition for starting the sequence. 

7.2.4. Restrictions on Time Values and Time Windows 
Although the syntax allows both absolute and relative time values to appear in either of the two 
boundaries in a time window, not all of the possible combinations make sense: 

1. A date in a time value that uses the "ast" time zone is meaningless. 

2 In the time window attached to a queue operation, including "delay", the time values must 
be relative (i.e., no dates or time zones allowed) and are interpreted relative to the start of 
the operation. 

3. In the time window of a during guard, the first time value (T    ) must be absolute.   The 
second time value (Tmax; 
relative to T. 

can be absolute or relative.   In the latter case, the time value is 

mirv 

7.3. Rules tor Matching Selections with Descriptions 
The meaning of the behavioral information is a predicate, M^R, T) => M^E, T), where R is the requires 

predicate, E is the ensures predicate, T is the timing expression, and Mf is the meaning function 
mapping a predicate and timing expression into a boolean [1]. 

A task description matches a task selection if the predicate associated with the behavioral information of 
the task description implies that of the task selection. If no timing expression appears, the predicate 

simplifies to R => E, and that of a task description must imply that of the task selection. 

Currently there are no facilities to check these implications and timing expressions, so for the time being 
the behavioral information part of a task description is treated as commentary information. However, 

timing expressions are used to simulate the behavior of a task and are therefore required by the simulator 

[6]. 
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8. Attributes 
Syntax: 
AttrDescriptionPart 

AttrDescription 

AttrSelectionPart 

AttrSeiectxon 

At trName 

GlobalAttrName 

AttrDisjunction 

AttrConjunction 

AttrPrimary 

AttrTer-^ 

Attrvalue 

OtherAttrValue 

''ATTRIBUTES'' AttrDescription_Listawaicolon 

AttrName " = ' '   AttrValue 

' 'ATTRIBUTES'' AttrSelection_List(iamico;Ljn ' ' 

AttrName ' ' = '' AttrDisjunction 

Identifier 

{ ProcessName * '. '' } AttrName 

AttrConjunction , 
AttrDisjunction ''OR'' AttrConjunction 

AttrPrimary, 
AttrConjunction ''AND'' AttrPrimary 

AttrTerm , 
' 'NOT'' AttrTerm 

AttrValue , 
'(' AttrDis^unction ')' 

OtherAttrValue , 
'(' OtherAttrValue List  ')' , —     comma  '   ' 
ModeAttrvalue , 
ImplementationAttrValue , 
ProcessorAttrvalue , 

IntegerValue , 
RealValue , 
StringValue , 
TimeValue 

-- Attribut«« in a task declaration 

-- Attributaa in a task s«l«ction 

Examples: 
attributes 

author = "jmw"; 
color = ("r»d", "whita", "blu«"); 
implomantation ■ "/usr/jmw/alv/cowcatch«r.o"; 
Que'i#_Size = 25 ; 

attributes 
author  =   "jmw"   or   "mrb"; 
color «a   "rad"   and   "blua'r   and   not   {"gr««n"   or   "yallow"); 
procassor ■ Warpl; 
mod«  =  groupad by   4; 

Meaning: 
Attributes specify miscellaneous properties of a task. They are a means of indicating pragmas or hints to 
the compiler and/or scheduler. In a task description, the developer of the task lists the possible values of 
a property; in a task specification, the user of a task lists the desired values of a property. All attribute 

values used in matching task selections with task descriptions must be constants, computable before 
execution time, i.e., tasks and their implementations are static properties of an application. 

Example attributes include; author, version number, programming language, file name, and processor 

type. There may be as many attributes as desired. Attributes defined in other tasks can be accessed by 
prefixing the name of the attribute with the name of a process instantiated from that task, e.g., pi.author. 
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The name of an attribute can appear in any context in which its value can appear. For instance, if the 

user defines an at 'e "Gueue_Size" as in the examples then "Queue_Size" can appear anywhere an 
integer value is e- x*. This permits the user to name say. a jjueue size and use the name to declare 

queues with idenu, J size in a number of task descriptions. Another use is to instantiate "families" of 
tasks, i.e.. tasks that sha;H the same value for some attribute, as shown in Figure 8. 

process 
Maatar_Proc«aa:   task  Mast«r_Ta8k 

attributes 
Key_Nain«i = some value, 
... other attributes, maybe . . 

end   Maat«r_Taak.; 

pi:   task   f oo 
attributes 
K«y_Nam«   = MaBt«ir_Proc»a8 . Kay  Nama; 
... other attributes, maybe ... 

end foo; 

p2 :   task   bar 
attributes 
K«y_Nan»« = Maatar_Proceaa . Kay Naivi«; 
... other attributes, maybe ... 

end  bar; 

-- A taak aalaction 

-- Sam« value as Maatar Proceaa 

-- Same valu« aa Maatar Procaaa 

Figure 8:   Use of Global Attribute Names 

The syntax and semantics of the attribute values are attribute dependent. If the attribute is not predefined 

In the language, the values are treated as uninterpreted numbers, time values, or strings, as the case 
may be. and compatibility is based on value equality. If the attribute is predefined in the language, the 

syntax for the legal values is given in Section 10.2. and compatibility is attribute dependent. 

The following attributes are predefined in the language: "mode" (specifies the mode of operation for a 
deal or merge predefined task); "implementation" (specifies the location of the task implementation); and 
"processor" (specifies the processor type on which the implementation can run). These are described in 
Section 10.2. 

8.1. Rules for Matching Selections with Descriptions 
If a task selection specifies an attribute not present in a task description, no match occurs, i.e , the 
compiler skips this description and continues searching for a candidate. If a task description provides an 

attribute not specified in a task selection, the attribute is ignored. 

if a task selection provides a predicate (a disjunction) for an attribute, a matching task description must 

provioe values that satisfy the predicate, i.e., the disjunction yields true when evaluated in the context of 
the values declared for the attribute. If a task description provides a single value for an attribute, a 
matching task selection must provide exactly that value. 
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9. Structural Information 
Syntax: 
Structure?art 

StructureClause 

ReconfigurationClause 

'STRUCTURE'' 
StructureClause_List8      a 

{   ReconfigurationClause-List      Cä   } 

'PROCESS' ' P :ocessDeclaration_ListSÄmicolon
, ' 

' QUEUE' ' QueueDeclaraticn_Listflamicolon ' y;' ' 

'BIND' '   PortBinding^List,,.^^^^   ";" 

:-      ''RECONFIGURATION'' 
Reconf iguration_Listfl<Maicolon   ' \- " 

Meaning: 
Process and queue declarations appear under the keyword structure in a task description. These 

declarations define a graph in which processes are the nodes, and queues are the links. These graphs 
depict the internal structure of a compound task. The structure part of a task description provides the 

means for developing hierarchical task descriptions. 

9.1. Process Declarations 

Syntax: 
ProcessDeclaration  ::=  ProcessName List skSelecrion 

Examples: 
pi:    task   obstacl«_findar; 
p2 :   task   obfltacl«_f indar  ports   f oo:   in,   bar:   out  end   obstacl«   findar; 
p3,   p4;   task  obfltacl«_f indar  attributes  author="mrb"   end   obatacl«   findar; 

Meaning: 
An instance of a task is bound to each process's name. The name of a task is the minimal part of a task 
selection. Local, actual names (e.g., ports "too"' and "bar" in the example) can be introduced by 
providing a port declaration, provided that the types of ports specified in the task declaration are identical 
to those provided in the task selection. If they are left out, the formal names used in Use task description 
are used instead. 

9.2. Queue Declarations 

Syntax: 
QueueDeclaration 

QueueDefinition 

QueueNariLe 

QueueSize 

GiobalQueueNaitv i 

:= QueueName { QueueSize } ,,:', QueueDefinition 

:=  GlobalPcrtName 
' '>'' ProcessName ''>' ' 

GlobalPortName 
Glob?IPortName 

' '>'' TransformExpression ''>' ' 
GlobalPortName 

:=  Identifier 

,_ \ y^i,   integerValue '']'' 

:=  { ProcessName ''.''■ } QueueName 
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Examples: 
ql: pi > > p2 ; 

ql: pi > (2 1) transpose > p2 ; 

ql[100]: pi > xyr > p2 ; 

-- Two ports conn«ct«d through an unboundad qu«u« 
-- Th« two port« must hav« th« sama typ« 

-- Two ports connÄCtad through an unbounded qu«ua 
-- Th« data arrays ara transposad in th« quaua 

-- Two ports conn«ct«d through a boundad (size = 100) qu«ua 
-- Data ar« transformed in th« qu«u« by a process ' 'xyz' ' 

Meaning: 
A queue definition establishes a logical link between two ports that communicate by passing data from the 
first port (source) to the second port (destination). The queue name must be unique within the task 

description defining the process-queue graph. The (optional) queue bound declares the maximum 
number of elements that will be stored in the queue at any one time. If a queue is full when a "put" 

operation is attempted, the process trying to store the data waits until the queue has space for the new 
item. If the queue bound is not provided, a configuration dependent, default queue length is assumed, as 
described in Section 10.4. 

When establishing a logical connection, the ports are checked for type compatibility. Non-union types are 

compatible if they have the same name. Union types are compatible if the source set is a subset of the 
destination set. A non-union source type is compatible with a union destination type if the source type 

name is a member of the destination set. 

If the types are not compatible, the user must provide a data transformation operation that will convert 
objects of one type into the other as described below 

9.3. Data Transformations 
Data transformations are operations applied to data coming from a source port in order to make them 
acceptable to a destination port. 

A data transformation is required if the input and output port types are not compatible. Such 

transformations are needed if, for instance, the types have the same structure but the data are in the 
wrong format, e.g., turning a square array on its side or converting between floating-point formats. 

Complicated transformations can be written as separate tasks, in which case an appropriate task must be 
selected and instantiated as a process, and the process name must be specified in the queue declaration. 
Simple transformations can be specified directly in the queue declaration. 

9.3.1. Off-Line Data Transformations 
Complex data transformations can be specified as regular tasks by writing a procedure in some 
programming language suitable for either the buffers or one of the heterogeneous processors and 
entering an appropriate task description in the library. These data transformation tasks must declare 

exactly one input port and one output port. 



task   cornar_tuming 
ports 

inl :   in   landinÄrk_rüw_ma jor; 
outl :   out  lajidmark_column_ina jor; 

attributes 
implÄmQntation  =   "/usr/mrb/acreatch.o" 
procasaor  = buffar_proc«8flor; 

end  cornar  turning; 
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9.3,2. In-Line Data Transformations 

Syntax: 
TransformExpression 

TransformOp 

spac« 

ReshapeOp 

SelectOp 

TransposeOp 

RotateOp 

ReverseOp 

DataOp 

VectorArgument 

ArrayArguinent 

Examples: 

:=     Transf orTnOp_LisT: 

:=  ReshapeOp , 
SelectOp , 
TransposeOp, 
RotateOp, 
ReverseOp, 
DataOp 

=■ VectorArgument ' 'RESHAPE' ' 

- ArrayArgument v 'SELECT' ' 

= VectorArgument "'TRANSPOSE'' 

= ArrayArgument ''ROTATE'' 

= IntegerValue ''REVERSE'' 

= Identifier 

= '(' IntegerValue_List8 Ä ')' 
'(' IntegerValue '%IDENTITY'' 
'(' IntegerValue ''INDEX'' ') 

y)' 

-- Empty vector 

:=  VectorArgument , 
'(' ArrayArgument_List spaca ') 

If the input is a 2x2x3 3-dimensional array: 
(3 4) reshape 

(12) reshape 

-- rashapas tha input array into a 3x4 2-diman8ional array. 

-- unravals tha array. 

If the input is a 2-dimenbional array; 
({5 2 3) (*)) select -- ganarataa an array consisting of rows 5 2 and 3, in that ordar. 

((*) (5 2 3)) select -- ganarates an array consisting of columns 5 2 and 3, in that ordar. 

(2 1) transpose — Transposaa tha array in tha normal mannar. 

(1 -2) rotate 

Additional examples: 
(5 identity) 

(5 index) 

2 reverse 

-- Rotatas aach row laft 1 position and than rotatas 
-- aach column of tha rasult down 2 positions. 

-- Ganarataa tha vactor (11111). 

-- Ganaratas tha vactor (12 3 4 5). 

-- Ravarsas tha alaraants along tha 2nd coordinata of an input array. 
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Meaning: 
The most common cases of data transformations are expected to be n-dimensional array manipulations. 
For these operations, the language provides a short-cut: it is not necessary to write task implementations, 
i.e., program code, and task descriptions and to enter them in the library. It suffices to specify the 

transformations as part of the queue declaration. 

In-line data transformations are specified in post-fix notation, interpreted left-to-right, with arguments 

preceding the operators, and with the input port providing the initial argument. In general, the arguments 

are multi-dimensional arrays (nested vectors) of scalar data values. 

Operator 

integer identity 

/nfeper index 

vector reshape 

array select 

vector transpose 

Description 

generates the vector (1 1 ... 1 1). 

generates the vector (1 2 ... N). 

unravels an array (i.e., linearizes it) and then reshapes into an array with the 
dimensionality of the argument vector. The input array is linearized in row order, i.e., 
by scanning all of the positions varying the highest dimension first. This operation 
must be specified if the input and output array do not have the same shape but the 
array elements are in the right order when the arrays are unraveled. 

extracts (slices) pieces of a data array. If the input is a vector, (5) select represents 
the 5th element, and (5 2 3) select is a new vector consisting of the 5th, 2nd, and 3rd 
elements in that order. A vector of the form "(*)" selects all components along one 
dimension. 

permutes the dimensions of a data array according to the argument vector (V). The 
ith coordinate of the input array becomes coordinate V[i] of the result. 

scalar_or_vector rotate 
specifies rotations of n-dimensional data arrays. The operator is preceded by an 
argument which must be either a scalar (signed) integer value or a parenthesized 
array of (signed) integer values. The magnitude of the values specify the number of 
positions to rotate the input data, and the sign of the values specify the direction of 
the rotation: a positive amount indicates rotation towards lower indices. 

A scalar argument specifies how to rotate an input vector. An n-length vector of 
scalars specifies how to rotate an n-dimensional input array along each dimension 
(one element per dimension). An n-length vector of vectors argument specifies how 
to rotate an n-dimensional input array along each dimension (one top level vector per 
dimension) and within each dimension, how to rotate each "row" (one element of a 
second level vector per row.) 

For example, consider the transformation "((1 2 0) (-3 -4)) rotate" applied to a 2- 
dimensional 3x2 input array. The vector (12 0) specifies how to rotate the rows; the 
vector (-3 -4) specifies how to rotate the columns. The first row is rotated left 1 
pos'tion, the second row is rotated left 2 positions, the third row is left unchanged. 
Then the first column is rotated down 3 positions, and finally, the second column is 
rotated down 4 positions. 

integer reverse reverses the order of the elements of an array along an arbitrary coordinate specified 
by the integer argument. If the input is a vector, the argument must be "1". In the 
transformation "2 reverse", if the input is a 2-dimensional array, this operation 
shuffles columns; if the input is a 3-dimensional array, this operation shuffles planes. 

Data Operations scalar operations applied to each element of an input array. The set of operations is 
configuration dependent. The initial set will include operations to round, truncate, or 
otherwise convert between various integer and floating-point formats, as described in 
the configuration file, Section 10.4. 

This is a first attempt at defining the set of the operations a user is likely to perform on n-dimensional 
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arrays. The guiding principle is to keep the notation simple; more complex transformations should 

probably be specified as off-line transiormatlons. 

A data transformation operation is more than just a way to achieve type compatibility between ports. It 
also serves to specify operations that would be inappropriate or inefficient if written as part of one of the 

tasks. For example, consider an application that requires scanning an array in different directions (e.g., 
first by rows, then by columns) and performing some operation on each element (e.g., computing the 
average of the neighbors). Rather than writing several versions of the task, one for each traversal 

pattern, one could simply write one version of the task, and then instantiate it as many times as 
necessary, each process so instantiated could then take its input arrays from queues that perform the 
appropriate transposition, as in "q1:p1>(2 1) transpose>p2". Arrays produced by p1 are transposed 

while in the queue, before they are delivered to p2. 

9.4. Binding Port Names 

Syntax: 
PortBinding 

ExtPortName 

IntPortName 

-     ExtPortName ' , = ' ' IntPortName 

=  PortName -- External port 

= GlobalPortName -- Internal port 

Example: 
bind 
p_daal.ini = obBtacl«_find«r.ini; 

p_marg«.outl = obBtaclÄ_f ind«r.outl; 

Meaning: 
A port binding maps a port of the process-queue graph defining the internal structure of a task to a port 
defining the external interface of a task. 

9.5. Process-Queue Graph Reconfiguration 

Syntax: 
Reconfiguration ::=      ''IF''   RecPredicate    ''THEN'' 

rocessTerminati 

Structure   List 

{   ProcessTermination-List    acÄ   } 

"apac* 
, 'END' '     * 'IF" 

ProcessTermination  ::=  ''REMOVE'' GlobalFrocessName List —     comma 

RecPredicace        ;:=  RecDisjunction , 
RecPredicate ''OR'' RecDisjunction 

RecDisjunction      ::= RecConjunction , 
RecDisjunction ,'AND'' RecConjunction 

RecConjunction      ::=  RecRelation , 
''NOT'' '(' RecPredicate ')' 



28 

RecRelation RecTerm ' , = ' ' RecTerm , --- Equal 

RecTerra ' y /■= ' RecTerm , -- Not equal 

RecTerm '*>' RecTerm , -- Greater 

RecTerm ''>= ' RecTerm r -- Greater than or equal 

RecTerm ' '<' '   RecTerm , -- Less 
RecTerm ''<= ' RecTerm , -- Less than or equal 

IntegerValue t 

RealValue , 
StringValue 
TimeValue 

RecTerm 

Examples: 
if  CurrQnt_Tiin«  >=   6:00:00   local   and   Current_Tiin«  <   18:00:00   local 
then 

process 
p   vision:   task  vision  attributes  procassor  =  warp2 ; 

queue 
cj_vi8ion_road:   p_deal.out3        >     >  p_vi8ion.ini; 
<^_obstaclÄS :        p_viflion . outl   >     >  p_m«rg« . in3; 

end if; 

Meaning: 
A reconfiguration statement is a directive to the scheduler. It is used to specify changes in the current 

structure, i.e., process-queue graph, of the application and the conditions under which the e changes 
take effect. Typically, a number of existing processes and queues are substituted by new processes and 

queues which are then connected to the remainder of the original graph. The reconfiguration predicate is 
a boolean expression involving time values, queue sizes, and other information available to the scheduler 
at run time. 

Notice that nothing is being said about the internal representation of time values- They are definitely not 

like integer or real values -- time values cannot be mixed with regular numeric values in an expression. In 
addition, currently the language does not provide any arithmetic operators for time values. However, a 

few predefined system functions provide for the computation of past or future time values, as described in 
Section 10.1. 
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10. Predefined Language Facilities 

10.1. Functions 

Syntax: 
FunctionCall        ::=  FunctionName { FunctionParameters } 

FunctionName        ::=  >^CURRENl^TIME'' , 
x ^MINUSJTIME' ' , 
' ^PLUS^TIME" , 
, ^CURREN^SIZE' ' 

FunctionParameters  ::=  M' Parameter List __ ') '      -- Function dependent 

Parameter ::=  IntegerValue , 
RealValue , 
StringValue f 

TimeValue 

Examples: 
Plus_TiTn«(Curr«nt_Tim«,   2.5  hours) —   2.5  hours   from  th«  currant   tim« 
Currant_Siza(Kast«r_Proc«flB .Data_Port) --  th«   siz«  of  a  qu«u«   f««ding  a port 

Meaning: 
The following functions are predefined in the language: "currentjime", "minusjime", "plusjime", and 

"current_size" 

The function call "Current_Time" returns the current time as an absolute date in the local time zone. 

The function call '■Minus_Time(TimeValue1,TimeValue2)" returns the time value obtained by subtracting 
TimeValue2 from TimeValue^ The following cases are allowed: 

1.11 both parameters are absolute times, the result is a relative time,  i.e.,  a duration. 
TimeValue1 must be later than Time\/alue2. 

2. If TimeValue1 is an absolute time and TimeVaiue2 is a relative time, the result is an 
absolute time in the same time zone as TimeVaiue.,. 

3. If both parameters are relative times, the result is a relative time.   TtmeValue1 must be 
larger than TimeValue2. 

The function call "Plus_Time(TimeValue1,TimeValue2)" returns the time value obtained by adding 

TimeValue2 to TimeVaiue^ The following cases are allowed: 
1. If one parameter is an absolute time and the other parameter is a relative time, the result is 

an absolute time in the same time zone. 

2. If both parameters are rela^ve times, the result is a relative time, i.e., a duration. 

The function call "Current_Size(GlobalPortName)" returns the current number of elements stored in the 
queue associated with a given port. 

Calls to these functions can appear anywhere a value of the same kind as the return value can appear. 
That is, a call to a function returning an integer, a real, a string, or a time value can appear instead of an 

integer, a real, a string, or a time value, respectively. 



30 

10.2. Attributes 
The following attributes are predefined in the language: "mode", "implementation", and "processor". 

10.2.1. Mode Attribute 

Syntax: 
ModeAttr ::=      ^'MODE''    »'=''   ModeAttrValue 

ModeAttrValue ::=     Identifier 

Meaning: 
The values of the "mode" attribute are identifiers denoting the operation performed by one of the 

predefined tasks: "broadcast", "merge", and "deal", as described in Section 10.3. 

The formal specification of the operation is given by the behavioral part of the task description. The 

identifiers used as values for the "mode" attribute are just a convenient shorthand to select what are 
expected to be frequently used tasks. Users are more likely to select predefined tasks by specifying a 
mode value (i.e., an identifier) than by specifying a timing expression or a function predicate. 

The following identifiers are representative of typical values for the "mode" attribute: "random", "fifo", 
"round_robin", "by_type". "balanced". "grouped_by_2". The actual values are implementation 
dependent. 

10.2.2. Implementation Attribute 

Syntax: 
ImplementationAttr      ::=      ''IMPLEMENTATION''    ''=''    implementationAttrValue 

ImplementationAttrvalue      ::=     StringValue 

Examples: 
impl«in«ntation   =   "/uar/cbw/htttO/damo . o" ; 

Meaning: 
The value of the implementation attribute is the name of the file containing the actual object code. The 
format of a file name may vary with the host operating system. 

10.2.3. Processor Attribute 

Syntax: 
ProcessorAttr       ::=  ''PROCESSOR'' v^='' ProcessorAttrValue 

ProcessorAttrValue  ::=  Identifier , 
Identifier '(' Identifier List _  ')' 

Examples: 
procaseor = n»68000 (m68020, m68032); 
procaaaor ■ m68020(pl, p2, p3); 
procÄSöor = m68032(p4, p5); 
procassor = ibml4l01; 
procassor = warp(warpl, warp2); 
procÄBaor = buff«r_procoB8or; 
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Meaning: 
The configuration of the heterogeneous machine specifies the different values for the "processor" 
attribute, including names of classes of processors as well as names of individual processors, as 
illustrated above. See Section 10.4 for details about specifying the configuration of the heterogeneous 

machine. 

The value of the "processor" attribute can vary in specificity by using a processor class name or an 

individual processor name. For example, WARP means any Warp processor; WARP1 means that Warp 
processor. 

If the user specifies the name of a class of processors as the valu0 of the "processor" attribute, any one 
of the members of the class can be used to execute the task. If the user specifies a class name and a set 

of members (in parentheses), any one of the members of this set can be used to execute the task. The 
members of the set must be a subset of the class as defined by the configuration. 

10.3. Tasks 
The following tasks are predefined in the language: "broadcast", "merge", and "deal". 

10.3.1. Broadcast 
"broadcast" is a task with one input port and as many output ports as needed.   Input data are replicated 
and sent to all the output ports.   Port names are in1 for the input port and outl. out2  outN for the 

output ports. 

10.3.2. Merge 
"merge" is a task with one output port and as many input ports as needed. The type of the output port is 
the union of all the input types. Input data items are merged and sent to the output port. Port names are 
ml, in2 /n/Vfor N input ports and outl for the output port. 

A merge discipline must be provided as a value to the "mode" attribute, as described in Section 10.2.1. 
Possible values include "random" (unordered), "fifo" (ordered by time of arrival to the merge process), 
and "roundrobin" (one from each input port and repeating.) Because of transmission delays, the order 

of arrival of the data might differ from the order in which the data were sent out. A FIFO merge process 
uses time of arrival, not time of creation, to order the data. 

10.3.3. Deal 
"deal" is a task with one input port and as many output ports as needed. The type of the input port is the 
union of all the output types. Input data items are sent to one output port. Port names are in1 for the 
input port and outl, out2,..., outNior the output ports. 

A deal discipline must be provided as a value to the "mode" attribute, as described in Section 10.2.1. 
Possible values include "random" (unordered), "roundrobin" (one to each output port and repeating), 

"by_type", "grouped_by_2", and "balanced". If dealing by type, the output port must be uniquely 
identifiable (i.e., there is exactly one output port of the right type for each possible type accepted by the 
input port.) This is the only kind of "deal" process in which multiple output types make sense. Other 

kinds of "deal" processes require compatible output types. 
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10.3.4. Illustrative Task Descriptions 
Figure 9 illustrates typical task descriptions for the predefined tasks. The task description in Figure 9.a 
depicts a 2-outpui broadcast task that handles items of some type "packet" in parallel. The task 

description in Figure 9.b depicts a 2-input merge task that handles items of type packet in round robin 
fashion. Finally, the task description in Figure 9.c depicts a 2-output deal task that handles items of type 

packet in round robin fashion. 

task broadcast 
ports 

inl: In packat; 
outl,   out2:   out packet; 

behavior 
ensures   "inaart(outl,   first(inl))   &   insert(out2,   first(inl))"; 
liming    loop  (inl   (outl   j|  out2)) 

attributes 
mod« = parallel; 

end broadcast; 

a. Parallel Broadcast 

task marga 
ports 

inl,   in2 :   in  packet; 
outl;   out  packet; 

behavior 
ensures   "insert (insert (insert (outl, first (ml) ) , first (in2) ) , first (in3) ) ' 
timing     loop   ((inl   in2   in3)    (repeat   3  =>  outl) ) ; 

attributes 
mode  =  sequential   round  robin; 

end merge; 

b. Round-Robin Merge 

task  deal 
ports 

inl:   in  packet; 
outl,    out2:   out packet; 

behavior 
ensures   "insert(outl,   first(inl))   &   insert(out2,   second(inl))"; 
timing     loop   (inl   outl   inl   out2); 

attributes 
mode =  sequential   round robin; 

end deal; 

c. Round-Robin Deal 

Figure 9:   Predefined Task Descriptions 

These descriptions do not really exist in the library.  The compiler generates them on demand to satisfy 
process declarations of the form; 
pb:   task broadcast  attributes mode = identifier;   end broadcast; 
pm     '"""' 
pd 

task merge attributes mode = identifier end merge; 
task deal attributes mode = identifier end deal; 

where identifier\s "parallel", "sequential_round_robin", etc., as defined by the implementation. 
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10.4. Configuration File 
Information about the configuration of the heterogeneous machine, the location of system files and 
libraries, and other random information required by the compiler, library, and scheduler appears in a 

configuration file. 

proceasor   =  warp(w«rp_l,   i«arp2); 
procaaaor  =   eun(8un_l,    aun_2,    •un_3); 
i-mplamantation   =   "/uar/cbw/hatlib/" ; 
dafault_input_oparation   =    ("gat",    0,01   seconds,    0.02   seconds); 
d<»fault_output_oparation   =   ("put",    0.05   seconds,    0.10   seconds); 
dafault_qu«u«_l«ngth   =   100; 
data__operation * ("fix", "fix.o"); 
clata_op«ration,   =   ("float",    "float.©"); 
data_op«ration   =   ("round_float",    "round.o"); 
data_oparation   =   ("truncate   float",    "trunc.o"); 

Figure 10:   Configuration File 

The configuration file in Figure 10 illustrates the definition of the hardware configuration (values for the 

"processor" attribute), the location of the system task implementations, and various pieces of information 

about queues and queue operations. 

In the "processor" attribute, the meaning of a class name is understood by the scheduler as standing for 
any of the specific values in the class (i.e., a run-time choice of processors). Notice that this choice can 
be restricted by the user in a task description by specifying a subset of the class, and restricted even 
further in a task selection by specifying an even smaller subset of allowable processors. 

The example configuration file also specifies the location of system files, in particular, the 

implementations of system tasks. Additional information in the file would describe default queue 
operations, data transformations, etc. 

Keep in mind that the configuration file is not written in the task description language. The example 
shown is just an illustration of the kinds of information that are likely to be contained in the rile — form and 
content of the file are implementation dependent. 
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11. Appendix -- An Extended Example 
This appendix illustrates a task-level description of a fictional application.  A process-queue graph of the 

application appears in Figure 11. 

11.1. Data Transformation Tasks 
task.  com«r turning 

port« 
inl:   in   l&ndmArk  row_major; 
outl:   out   landirvar)c_colunm_mAjor; 

attributas 
impläjnontation  =   "/u8r/mrb/scr»«tch . o" ; 
proc«8»or  =  buffÄ^_proc«8 8or; 
. . .     other nttnbutes uniquely identifying an implementation   . . . 

•nd  corn«r_turning; 

11.2. Type Declarations 
typ« map databaaa i« 

typ« daatination is 

typ« local jjath is 

t^« r«cogniz«d road is 

typ« road_s«l»ction is 

typ« v«hicl«_position is 

t^-p* v«hicl«_motion is 
typ« wh««l"motion is 

typ« landmark is 

typ« landmark_li8t is 

typ« landmark row major is 

typ« landmark_column_major is 

typ« viaxon_road is 

typ« sonar road is 

typ« lasar_road is 

typ« road is 

typ« obstaclös is 

11.3. Task Descriptions 
task navigator 

ports 

inl: in map_databas«; 

in2 : in dastmation; 

outl; out road_s«l«ction; 

out2: out landmark_list; 

attribut«« 

author = "jmw"; 

varsion = "1.0"; 

proc«ssor = "m68020"; 

«nd navigator; 

task road_pr«dictor 
ports 

inl: in map databas«; 

in2. in road_8«i«ction; 

in3  in v«hicl«_position; 

outl: out road; 

end road_j3r«dictor; 

task landraark_pr«dictor 

ports 

inl: in landmark._li8t; 

in2 ; in v«hicl«_jposition; 

outl: out landmark row_major; 

«nd landmark_pr«dictor; 
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Map database Dest inati on 
Crem Mission Control 

Figure 11 — Example Process-Queue Graph 
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t^sk road_findar 

port* 

inl: in road; 

outl:   out   racogniz«d   road; 
•nd  road_find«r; 

task   landmark   racognizwr 
ports 

inl:   in   landmark_coluinn_inajor; 
outl:   out   landmark_coluitui_major; 

and  landinark_r«cofyni2«r; 

task  vision 
ports 

inl:   in  vision_road; 
outl:   out   obstaclas; 

attributes 
procasjor  =  warp; 

«nd vision; 

task   sonar 
ports 

inl:   in   sonar_road; 
outl:   out   obatacles; 

attributes 
proceasor  ■  warp; 

and  sonar; 

task   laaar 
ports 

inl:   in   la8ar_road; 
outl:    out   obstaclas; 

attributes 
procaasor  =  warp; 

and  lasar; 

task positxou_coinputacion 
ports 

inl:    in   landnuirk_columii_major; 
in2: in vahicla_motion; 

outl, out2: out vahicla_poait. on; 

end poaition_computaticn; 

cask local_path_planner 

ports 

inl: in wheel motion; 

in2: in obstacles; 

outl: out localjjath; 

out2: out vehicle_motion; 

end local__path_plani,.ar; 

task vehicle control 

ports 

inl: in local_j3ath; 

outl: out wheel motion; 

end vehicle control; 
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task obstacla_fInder 

port» 

inl : in r«cogniz«d_roaci; 

outl    t obBtacles; 

behavior 

Irop (inl[10, 15] outl[3f 4}); 

structure 

process 

p_deal:  task deal attributes mode = by_type end deal; 

p merge: task merge attributes mode = fifo end merge; 

p_8onar: task sor.ar; 

p_laser: task laser attributes pr-oressor = warpl end laser; 

bind 

p deal.inl = obstacle_finder.ini; 

p merge.outl ~ obstacle finder.outl; 

queue 

qi 

q2 
q3 
q4 

p_sonar.outl > > p_merge.ini; 

p lasar.outl > > p_merge.in2; 

p_deal.outl > > p_sonar.ini; 

p_deal.outl  > > p_la3er.ini; 

--for dynamic reconfiguration 

if CurrentJTime >= 6:00:00 local and CurrentJTime < 18:00:00 local 

than 

process 
p vision: task vision attributes processor = warp2, end vision; 

queue 

qs 
q6 

end if 

end obstacle finder; 

p deal.outS   > > p_vision.ini; 

p_vision.outl > > p ma  ^.in3; 

11  ■  Application Description 
tasK ALV 

attributes 

version = "Fall 1.986"; 

processor = HET0; 

spaed  = fast; 

structure 

process 

navigator: task navigator attributes author = "jmw" end navigator; 

rojd_p,-edictor:      task road_predictor; 

landmark_j. redactor :  task landmark_predictor; 

road finder: task road finder; 

landmark_recognizer: task landmark recognizer; 

obstacle_finder:     task obstacle finder; 

position_ccmputation ; task po8ition_coinputation; 

local_path_planner:  task localjpath_planner; 

vehicle_control: 

ct_process: 

quaue 

task vehicle_control; 

task comer turning, 

qi 
q2 
q3 
q4 

q5 

q6 

q7 
q8 

q9 

navigator.outl 

navigator.out2 

road_jpredictor. outl 

road finder.outl 

obstacle finder.outl 

local_jpath_planner. outl 

local_path_planner.out2 

vehicle control.outl 

landmark_predictor.outl 

> > road_pred±ctor.in2; 

> > landmrrk_predictor.ini; 

> >   road_findar.ini; 
> >  obstacle  finder.ini; 
> >   local_path_planner.in2; 
> >  vehicle_control.ini; 
> >  position_coiBputation. in2; 
> >   local_path_planner. inl ; 
> ct_proces8  >  landmark  recognizer.inl; 

—   requires   data  transformation between   row_major   and colunuri_iaajor   landmarks 
qlO : landmark_recognizer.outl  >  > position_con5)Utation. inlj- 
qll :position_coinputation , outl>  >  road_predLictor. in2; 
ql2 :position_coir5>utation.out2>  >  landinark_predictor. in2; 

end ALV; 
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